
UNCLASSIFIED
SECUP'.v CLASSIF .A'ION, OF THIS PA,[(WernDatr Entered)

REPQ DQ. N I , PAGE er r ',
1. REPORT NUMBER FI . 60VI ACCESSION ,_. 3. RECIPIrl S CATALOG. hUUi

4. TITLE (a',dSbttIe) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: SYSTEAM, 3 Nov 89 .- 1 Dec 90
C3 Ada Compiler Version R00-00, Concurrent Computer

Corporation 5600 under RTU version 4.0A (host & target) 6. PERFOm;NGbRG. REPORT NUMBER

AI1fl'T1.10199

q,7. AUTM4OR~s) V. CONTRACT ORt 6RANI NuM--ERjS)

IABC,
Ottobrunn, Federal Republic of Germany.

I. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PR,2E"T. TASK

04 IABG,
AREA & WORK Uk:T NUM:,,R5

Ottobrunn, Federal Republic of Germany.

11. CON'RO.LING OFFICE NAIE AND APDRESS 12. REPOR! DATE
Ada joint Program Office
United States Department of Defense NUu,.K of vL

SWashington, DC 20301-3081

14. NOWTOR NG AGENCY NAMi & ADDRESSfI different from Controhng Office) 15. SECu RIT CLASS (oft htsrepo,'i
IABG, - UNCLASSIFIED

Ottobrunn, Federal Republic of Germany. 5 C srICATIh N DO,%AIN

16. OISTRIBJTIOh STATEMENT (ofth,sRetpot)

Approved for public release; distribution unlimited.

17. DISTRI 5.TION STAUE %-'%' (of the b.TracTente,ed,nB;ck2 If d.Herent (ton RePOT)

UNCASIFIDOTIC
ELECTE

1a. SUPPEMihTAR1 NOTES MAR 5i9U

Db
10. KE VWORDS (Continue on reverse Sde f neceiur, and identify by block number)

Ada Progra.--ing language, Ada Compiler Validation Sur,"nary Repzrt, Ada
Com-piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC T (Contnue on ,everside ,fnecuesaro nd dent,f) by block number)

SYSTEAM, C3 Ada Compiler, Version ROO-00, IABG, West Germany, Concurrent
Computer

Corporation 5600 under RTU Version 4.OA (host & target), ACVC 1.10

DD tu, 1473 IDI ION or I NOv 65 IS OBSOLETE
I JAN 73 S/N OO-LF-01-6501 UNCLASSIFIED

SLCUP11v CLASSIFICATION Or 1MIS PA:E (K4PenDatEnttered

AVF Control Number: IABG-VSR-047

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #89110311.10199
SYSTEAM

C3 Ada Compiler Version ROO-00
Concurrent Computer Corporation 5600

under RTU version 4.OA

Completion of On-Site Testing:
3rd November 1989

Prepared By:
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

4 •t

A da Compiler Validation Sluniary R~prt

\.omilir kle 3 Ada Cinpile r
V-ersiLon R00-00

C,=rt-Liciate Number: #89j1031'.',10

Host and Tarqtet: Concurrent Compute:r Cornor-ation 51".00
undc-r RTU -;Cersio-n -.0A

Testing Completed Friday, 3rd Nov;ember 1929 Using .'C1 .10

This report has bEen re.iwdand is approvz d.

Dr S. i~Abr inner

D8012 Ottnbriinn
14-st r y

Accesiori For

~~da~<~aN ioTIS CRAMI
AdallliyaronOraniatonDflC TAB 0l

Dr. John 7. 7?'ramkerUd:O2e
lnstitute for Densie 'nalyses

-Xandria- V. 2231

By ..
Dist.iio ' I

Pkvjlk.illty Cleis

n- Int POro rr-iT office Ds
Dr John Solomond Dist
T) recrrAd

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2 CONFIGURATION INFORMATION 7

2.1 CONFIGURATION TESTED 7
2.2 IMPLEMENTATION CHARACTERISTICS 7

CHAPTER 3 TEST INFORMATION 14

3.1 TEST RESULTS14
3.2 SUMMARY OF TEST RESULTS BY CLASS14
3.3 SUMMARY OF TEST RESULTS BY CHAPTER15
3.4 WITHDRAWN TESTS 15
3.5 INAPPLICABLE TESTS 15
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 19
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation 19
3.7.2 Test Method20
3.7.3 Test Site21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX D COMPILER AND LINKER OPTIONS

INTRODUCTION

CHAPTER 1

INTRODUCTION

I

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.)

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution. i,. -

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

INTRODUCTION

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 3rd
November 1989 at SYSTEAM KG, Karlsruhe.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from
IABG mbH, Abt. SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

2

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

4i

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK-FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

6

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: C3 Ada Compile- ersion ROO-00

ACVC Version: 1.10

Certificate Number: #39110311.10199

Host and Target Computer:

Machine : Concurrent Computer Corporation 5600

Operating System : RTU Version 4.OA

Memory Size : 8 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing loop

CONFIGURATION INFORMATION

statements nested to 65 levels. (See tests D55AO3A..H
(8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. (See test D56001B.)

4) TLe compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORTINTEGER, LONG-FLOAT and LONGLONGFLOAT in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

4) No exception is raised when an integer literal operand in a
comparison or membership test is outside the range of the
base type. (See test C45232A.)

5) No exception is raised when a liter&. operand in a fixed-
point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

8

CONFIGURATION INFORMATION

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rouading to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4A014A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

This implementation evaluates the 'LENGTH of each constrained
array subtype during elaboration of the type declaration. This
causes the declaration of a constrained array subtype with more
than INTEGER'LAST (which is equal to SYSTEM.MAXINT for this
implementation) components to raise CONSTRAINTERROR. However the
optimisation mechanism of this implementation suppresses the
evaluation of 'LENGTH if no object of the array type is declared
depending on whether the bounds of the array are static, the
visibility of the array type, and the presence of local
subprograms. These general remarks apply to points (1) to (5), and
(8).

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception if the
bounds of the array are static. (See test C36003A.)

2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components if the bounds of
the array are not static and if the subprogram declaring the
array type contains no local subprograms. (See test C36202A.)

3) CONSTRAINT ERROR is raised when an array type with
INTEGER'LAST + 2 components is declared if the bounds of the

9

CONFIGURATION INFORMATION

array are not static and if the subprogram declaring the
array type contains a local subprogram. (See test C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINTERROR when the array type is declared if the
bounds of the array are not static and if there are objects of
the array type. (See test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the
array type is declared if the bounds of the array are not
static and if there are objects of the array type. (See test
C52104Y.)

6) In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERICERROR or
CONSTRAINT-ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises CONSTRAINT-ERROR
when the array type is declared if the bounds of the
array are not static and if there are objects of the array
type. (See test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is not evaluated in its entirety before
CONSTRAINT-ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

10

CONFIGURATION INFORMATION

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

3) CONSTRAINT ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1Ol2A and CA2009F.)

3) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAIOl2A.)

4) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

6) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

11

CONFIGURATION INFORMATION

8) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OIlA.)

j. Input and output.

I) The package SEQUENTIALIO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

2) The package DIRECT 1O can be instantiated with
unconstrained array types and record types with
discriminants without defaults. However this implementation
raises USE ERROR upon creation of a file for unconstrained
array types.(See tests AE2101H, EE2401D, and EE240IG.)

3) Modes IN-FILE and OUT FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Modes IN-FILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

5) Modes INFILE, OUTFILE are supported for text files. (See
tests CE3102E and CE3102I..K (3 tests).)

6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K AND CE2102Y.)

8) RESET and DELETE operations are supported for text files. (See
tests CE3102F..G (2 tests), CE3104C, CE311OA, and CE3114A.)

9) Overwriting to a sequential file truncates the file to the
last element written. (See test CE2208B.)

10) Temporary sequential files are given names and deleted when
closed. (See test CE21O8A.)

11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

12

CONFIGURATION INFORMATION

12) Temporary text files are not given names. (See test CE3112A.)

13) More than one internal file can be associated with each
external permanent (not temporary) file for sequential files
when reading only or writing only. (See tests CE2107A..E
(5 tests), CE2102L, CE211OB, and CE2111D.)

14) More than one internal file can be associated with each
external permanent (not temporary) file for direct files when
reading only or writing only. (See tests CE2107F..H (3 tests),
CE2110D AND CE2111H.)

15) More than one internal file can be associated with each
external permanent (not temporary) file for text files when
reading only or writing only. (See tests CE3111A..B (2 tests),
CE3111D..E (2 tests), CE3114B, and CE3115A.)

1.3

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS
Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors.
The AVF determined that 265 tests were inapplicable to this
implementation. All inapplicable tests were processed during
validation testing except for 159 executable tests that use
floating-point precision exceeding that supported by the
implementation. Modifications to the code, processing, or grading for 14
tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 2057 17 27 46 3408

Inapplicable 0 6 258 0 1 0 265

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

14

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 201 590 566 245 172 99 161 331 137 36 252 325 293 3408

N/A 11 59 114 3 0 0 5 1 0 0 0 44 28 265

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2DIIB
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 265 tests were inapplicable for
the reasons indicated:

15

TEST INFORMATION

a. The following 159 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (11 tests) C455210..Z (12 tests)
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

b. C34007P and C34007S are expected to raise CONSTRAINT-ERROR. This
implementation optimizes the code at compile time on lines 205 and
221 respectively, thus avoiding the operation which would raise
CONSTRAINT-ERROR and so no exception is raised.

c. C41401A is expected to raise CONSTRAINT-ERROR for the evaluation
of certain attributes, however this implementation derives the
values from the subtypes of the prefix at compile time as allowed
by 11.6 (7) LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT-ERROR is not raised.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001W
CD710IF

e. C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable
because the value of SYSTEM.MAX MANTISSA is less than 48.

f. C47004A is expected to raise CONSTRAINT-ERROR whilst evaluating
the comparison on line 51, but this compmiler evaluates the result
without invoking the basic operation qualification (as allowed by
11.6 (7) LRM) which would raise CONSTRAINTERROR and so no
exception is raised.

g. C86001F is not applicable because, for this implementation, the
package TEXT_10 is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete.

h. B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER or SHORT-INTEGER.

i. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

16

TEST INFORMATION

j. B86001T and C35702A are not applicable because this implementation
supports no predefined floating-point type with a name other
than FLOAT, LONG-FLOAT, or LONGLONGFLOAT.

k. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

1. CD1009C, CD2A41A, CD2A41B, CD2A41E and CD2A42A..J (10 tests) are
not applicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

m. CD2A61I and CD2A6lJ are not applicable because this implementation
imposes restrictions on 'SIZE length clauses for array types.

n. CD2A71A..D (4 tests), CD2A72A..D (4 tests), CD2A74A..D (4 tests)
and CD2A75A..D (4 tests) are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
record types.

o. CD2A84B..I (8 tests), CD2A84K and CD2A84L are not applicable
because this implementation imposes restrictions on 'SIZE length
clauses for access types.

p. CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIAL_10.

q. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIAL_IO.

r. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECTIO.

s. CE2102I is inapplicable because this implementation supports
CREATE with IN-FILE mode for DIRECTIO.

t. CE2102J is inapplicable because this implementation supports
CREATE with OUT-FILE mode for DIRECT_10.

u. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

v. CE21020 is inapplicable because this implementation supports RESET
with IN-FILE mode for SEQUENTIALIO.

w. CE2102P is inapplicable because this implementation supports OPEN
with OUT-FILE mode for SEQUENTIAL_10.

x. CE2102Q is inapplicable because this implementation supports RESET
with OUT-FILE mode for SEQUENTIAL_10.

17

TEST INFORMATION

y. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECT10.

z. CE2102S is inapplicable because this implementation supports RESET
with INOUT FILE mode for DIRECT_10.

aa. CE2lO2T is inapplicable because this implementation supports OPEN
with IN FILE mode for DIRECTtO.

ab. CE2102U is inapplicable because this implementation supports RESET
with IN FILE mode for DIRECT_10.

ac. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECT 10.

ad. CE2102U is inapplicable because this implementation supports RESET
with OUT-FILE mode for DIRECTIO.

ae. CE2107C..D (2 tests) raise USE ERROR when the function NAME is
applied to temporary sequential files, which are not given names.

af. CE3102E is inapplicable because text file CREATE with INJILE mode
is supported by this implementation.

ag. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ah. CE31O2G is inapplicable because text file deletion of an external
file is supported by this implementation.

ai. CE3102I is inapplicable because text file CREATE with OUTFILE
mode is supported by this implementation.

aj. CE3102J is inapplicable because text file OPEN with INFILE mode
is supported by this implementation.

ak. CE3102K is inapplicable because text file OPEN with OUT-FILE mode
is not supported by this implementation.

al. CE3111B and CE3115A are inapplicable because they assume that a
PUT operation writes data to an external file immediately. This
implementation uses line buffers; only complete lines are written
to an external file by a PUTLINE operation. Thus attempts to GET
data before a PUT-LINE operation in these tests raise END-ERROR.

am. CE3112B is inapplicable because, for this implementation,
temporary text files are not given names.

an. CE3202A is inapplicable because the underlying operating system
does not allow this implementation to support the NAME operation
for STANDARD-INPUT and STANDARD-OUTPUT. Thus the calls of the NAME

18

TEST INFORMATION

operation for the standard files in this test raise USEERROR.

ao. EE2401D contains instantiations of package DIRECTIO with
unconstrained array types. This implementation raises USE-ERROR
upon creation of such a file.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 14 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B24009A B29001A B38003A B38009A B38009B
B51OOIA B91001H BA1101E BC2001D BC2001E BC3204B
BC3205B BC3205D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the C3 Ada Compiler Version ROO-O0 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

19

TEST INFORMATION

3.7.2 Test Method

Testing of the C3 Ada Compiler Version ROO-00 using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of hardware and software components:

Compiler: C3 Ada Compiler Version ROO-00

Host and Target computer:

Machine : Concurrent Computer Corporation 5600

Operating System: RTU Version 4.OA

The Concurrent Computer Corporation 5600 machine is based on a MC68020 CPU
and uses a MC68881 floating point coprocessor.

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded onto a SUN 3/60, and
tranferred via ETHERNET to the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the Concurrent
Computer Corporarion 5600. Results were transferred to a SUN 3/60, via
ETHERNET, and then transferred to a VAX 8350, via DECNET, where they were
printed and evaluated.

The compiler was tested using command scripts provided by SYSTEAM KG
and reviewed by the validation team. Tests were compiled using the command

Smmll/adac -v -1 <file name>

and linked with the command

$mml8l/adac -v -m (test name> -o <test name>.OUT

Chapter B tests were compiled with the full listing option. A full
description of compiler and linker options is given in Apendix E.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

20

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at SYSTEAM KG, Karlsruhe and was completed on Friday,
3rd November 1989.

21

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the following Declaration
of Conformance concerning the C3 Ada Compiler,
Version ROO-O0.

DECLA-RATION OF CONFOILMAiNCE

Compiler Implementor: Systeam KG
Ada Validation Facility:
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: C 3Ada Version: ROO-00

Base Host Architecture ISA: Concurrent Computer Cormoration 5600

Host Operating System: RTU Version 4.OA
Base Target Architecture ISA: Same as Host
Target Operating System: RTU Version 4.OA

Implementor's Declaration

1. the Undersigned. representing Sysearm KG. have implemented no deiiberate e:tensions to the
Ada Language Standard .- NuSI/,ILM-STD-1815A in the compilers listed in this ieciaracion. I
deciare that Concurrent Computer Corporation is the owner of record of the Ada language
:omoiiers liscted above and. as such. is responsible for maintaining the said compiuers in
conformance to ANIS/NIL-STD-1815A. All certificates and registrations for Ada language
compileris) listed in this declaration shall be made only in the owner's corporate ,ame.

r . trsein, President 3ata
Owner's Declaration

I. the undersigned. representing Concurrent Computer Corporation take full 'esponsibiiiy for
impicmentacion and maintenance of the Ada Compilers listed above, and -rce to public
disciosure of "he (inal Validation Summary Report. I further agree to continue "o ,comply with
the Akda trademark policy, as defined by the Ada Joint Pogram Office. I declarc hat ail of the
Ada language compilers listed. and their host/target performance are in compiiance with the
-da Language Standard -INSULMIL-STD- L815A.

Seetoarana Shastre
S1enior M~anager. System Software Development (Datei

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the C3 Ada Compiler Version ROO-O0, as described in
this Appendix, are provided by SYSTEAM KG. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific
portions of the package STANDARD are also a part of this Appendix.

4 Predefined Language Environment

The predefined Ianguage environment comprises the package standard, the language-
defined library units and the implemcnta.tion-dcfined library units.

4.1 The Packaqe STANDARD

The specification of the padage standard is outlined here; it contains all predefined
identie:3 of the implementation.

The operationw defined for the predefined types are not mentioned here, since
they are implicitly declared according to the language rules. Anonymous types (such
aa uni'crs _.rntegcr) are not mentioned either.

PACKAGE standard rS

TYPE boolean IS (false, true);

TYPE short-inte6er IS RANGE - 32_-78 .. 32-767;

TYPE integer IS RANGE - 2.47_483_48 .. 2147-483-047;

TYPE float IS DIGITS 0 RANGE
- 18O.FFFFFFIE32 .. 1e#O.FFFFFF#E32:

TYPE long-float IS DIGITS 15 FLANGE
- 1600.FFFFFFFFFFFFFS#E258 .. 16#0.FFFFFFFFFFFFF8#E250;

TYPE long-long-float IS DIGITS 18 RANGE
- i8#0.FFFFFFFFFFFFFFFF#E409.
16#O.FFFFFFFF._FFFF FFFF#E4096:

-- TYPE character IS ... as in [Ada.Appendix C3

-- FOR character USE ... as in [Ada.Appendix C1

-- PACKAGE ascii IS ... as in [Ada.Appondix C]

-- Predoeined subtypes and string types ... as in [Ada.Appendix C]

TYPE duration IS DELTA 201.0#E-14 RAGE
- 131-072.0 .. 131_071.999_938ge4_843_75:

-- The predefined exceptions are as in CAda.Appendix C]

END standard:

APPENDIX F
IMPLEMENTATICN-CEENDENT CHARACTERIST1CS

F.1 INTRODUCTICN

The Ada ors amning language definition requires every Ada crr.vilation sv.,sem to su.piy an a.w-edL'. F wi
ccntains all irplementaicn-pe ..c as.es of :he compiler and run-uime system.

F.2 IMPLI.MENTATION-0EEND ENT PRAGMAS

The following is a ist oe all pragras in C;Ada. predefined as well as impleientaon-defhed:

PRAGNA R-1MPLE;MF-V=I coNC1IErs
B 1r PkC<Yes Allows armvs and records to be packed to the bytelee

CON"Ir-E- No Not appUcable, because no autcmatic torage reclamation of
unreferenced access obiec's is perforned. The cmplete storaze
recuire-ment of a coilec.ion is reieased when it passes out or scoe.

LSBORAI I Yes Its handled as defined by the Ada language.

EX" YIN L-A Yes Y -. llows a e asociaion of in externai ame with &. n or sto~ime

%ilovdon Nn tAeL object .
' ?L-N< I Yes I.Subprogras are exanded iline ather than clled.J

RNEEFAC2 Yes Is implemented for the languages C and.Assebier.

LIST I Yes rs handaed as defined by the Ads language.

MEMOR...SZ~ I No IYou cnnot change the number of available stompg units in the
machine configuration. which is defined in packa ge SYS-7ENX

OP7hMIZ= No COptirriztion of 2 cornoilation =a only be controlled using the -0
otion on the corniet command line.' I

?Ac:(Yes lIllows arrays and re-ords to be oackied to the bit level.
?AGE- Yes Its handled as defined by the Ada ianguage.

PRIORIT Yes 1 lshancled as derlned by the Ada language Priorities betweeri 0 andZ53 are .s-u.rred. "

VOLATILEZ Yes P-events the optimizer from eliminazing memory references.

48-533 FO0 ROo F-1

PRAG IA LNPLEMEN-TED I co I NIENTrS
SiLA ED No Not aoviicable. as ever read or "rite overation an a stair or 2c5.s

type is a smc nizucn point for tht variable in the C'Ada
imilemenmtion.

S-4ORC.GEJNIT No You cannot change the number of bits in a storage unit as deied by
... .. I package SYST ,

SUPPRESS No I Different types of check cannoc be be switche' on and cff for specjic
I I obiects however, see SU'PMUS.ALL

SZ'PPR.ESSALL Yes This prapna prevents the comaiier from ieraing any code to ceck
for errors that may raise CONS ANT _ROR or

.. . . .NUI C ROR.
S Y S -M A,,M No You cannot change the system name 2s defined in packaze SYSTM.

F.2.1 Pragma INLINE Restrictions

Inline expansion of subprogram calls occurs only if the subprogram does not contain any
declarations of subprograms, task bodies, generic units, or body stubs. For recursive calls, only
the outermost call is expanded. The subprogram must be previously compiled, and if it is a
generic instance, it must be previously completed. If for one or more of these reasons the inline
expansion is rejected by the compiler, a corresponding warning message will be produced.

F.3 REPRESENTATION CLAUSES

The following subsections descibe the restictions on representation clause:s as deflned in Chapter 13 of the
Refe.rece Man.ua/c or a ie Ad2a Progrwuni'g Lfnguage."

F.3.1 Length Ctauzes

A lcngth clause soecsif the Imount of st rage to be allocated for objecs of a given type, The following is a list o
the impiernenaion-dependent acrtibutes:

must be z=2 - 3 rany integer, fixed .oint. or enumetation type. For any tipe derived
from FLOAT. LON G-LOAT, or LONG.LONGFLOAT, the siz must be equal to the
default value selected by the compiler. These are Z3 (4, and 96. respecively. The only
value allowed for acc types is 32 (the default value). If any of these restrictions is
violated. the compler will epon a RESTRICTION rtrr.

TSTORAGZ .E If this length clause is atoled to a collection, the exact amount of siace sveciied will be
aocated. No d.namic extensica of the collection will be performed. If th length clause
is not pecfied the collection will be extended automatically whenever the allocator
new is executed and the collection is fu.

T'STORAGE_SaE If this length claus is appRled to a zwk type, the specified amount of stack space will be
allocated for each task of corresponding type. The value suppled should noi be law than
1400u. If no leogth clause is specirled for a task type, a default value of 10K bytes is
supplied by the compiler. Stack space allocated for a task is never extended
automad ily at r=-tme.

TSMALL There is no implememtdon-dependent restriction. In particular. even values of SMALL
which amt powers of 2 may be chosen.

F-2 4-555 FOO ROO

-- mmmmmlmiil
i

i-,.

F.2.2 Representation Attributes

The Rcresentati n aributes listed below are as wseciried in the Reference Manualfor dte.-da Pro nrnmminq
Lanudge, Secion 13.7Z

X'ADDRESS is only supported for objects, subprograms, and inc 4rupt entries. Applied
to any ocher entity, this attribute yields the value SYSTEMVLADDRESS-ZERO.

X'SZ- E is handled as deined by the Ada language.

R.C'POSrrON is handled as defined by the Ada language.

R.C Z .73f is handled as defned by the Ada lan guage.

R.C LAST-BrIT is handled as defimed by the Ada language.

TST"ORAGE_ S aoplied to an ac s type this atribute will return the amount of storoge Curently
allocted for the catresponding collecicn. The returned value may vary as coilections
ae extended dynamicly.

T'STORAGE_SIZE for task types or task objects, this atribute is handled as derfmed by the Ada anVguae.

F.3.3 Representation Attributes of Real Types

This subsec:ion lists all m-resenta ion attrmutes for the floating point types supported:

P'DtGj C S yields the number of decimal digits for the subtype P. Te values for the oredefined
ae e 6. 15. and 18 for the types FLOAT, LONG_F..OAT, and
ONGLONGFOAT, respec" vely.

P'NLAkN S A yields the number of binary digits in the mantissa of P. The eoi/'ing table shows the
relaticnship between 'DIG.I-LLS and MANSSA:

DIGIrSM , YTSSA I DIGMT5 MAJNTISSA

1 5 10 35
2 8 11 38
3 11 12 41
4 15 13 45
5 18 14 48
6 21 15 51
7 25 16 55
8 2 17 H3
9 31 18 61

4-535 FO0 ROO F-3

?*L5?SILCN yields the absolute ralue of the di.Fference between the model number 1.0 and the ne,
imodel numbe above 1.0 ote subrvpeP:

DIGITS I EPSIL.ON IjDIGIT I EPSILON
I 1 &-0. 1 ?EO I 10 1&"10. 4*E-08
2 16410.29E-01 1 11 164.814E-409
3 1&640.4*E-02 1 12 1�.1 *E-09
14 W0#.49E-031 13 140.1#E-10
5 16'40.8*E-04 14 1640.29E-11
6 W64.14 -4 15 1640.4;OE-12
7 14.E-5 16 16#0.4E-13
8 1600.22*E-06 17 1640.3*-14
9 I�.4E-07 18 1&40.1.#E-.4

PSMAX yields the lairest exponent of model numbers for subyp.?

DiG ITS IENMAx [DGIT FtEA7x1
1 20 10 1.40
2 32 11 152
3 A4 12 164
4 60 13 180
5 7 2 14 192
6 84 15; 204

100 16 20
8 112 17 2-2

9 12.4 18 2,4

PSMAL..Z.yields the snialIen model numoer or subry'pe P:

DzGrTs ISMALL DIGITS I S-MALL.
1 164.84E-05 10 16&M. B* E 35
d. 1640SO.E-08 11 164#0.84E-38S
3 1640.8.#E11 12 16#0.81"E-41
4 14 E 15 13 164.S#E-45
5 16040 E-18 14 1640.8#E-48
6 1640. 8-E-21 15 1640.3E-31
7 16408,UE .5 16 6#.8#E-5
8 1640.8vpE 28 I 7 16#0.S."E-58
9 164.SftE-31 8 1608E5

49-333 FOO ROO

?*LARG=- vieids the Izrzes~mnccei number of the subtype?

DIGITS LARGZ

I 16&0.FF.E08

3 1 -- O. 1rE I
4 1690. FF71

7 16;-0. FrFr-3AE 25
8 1 .F rr-. r-r ;, =1

9 1 0 X F-r-Fr -r L #E 31
10 6O.s-.EE5
11 W6O.FF.zrJ*3
12 1#.F~~?*~
13 W6o.~~FFFF~4

16 lQF ~~F*5
17 WO
18 16OF F -r '6

Trhe following artributes-wiU renwn chuceivs of the safe numbes anid the -imuLeernatio of the floating point
types. F6C any floa =*g point type sub ?, the iruibutes below will yieid the value oe the prededned floacmng PC=n
onto whichi tbe -,ype P is rnacced. For this ressn. only the values fcr the types ---OAT. LOr4G.YtOAT, anid
LONG.S.ONG-RFLOAT are given:

A= ELB(TE FLOAT ILONGFLOAT LONG LONG FLOAT

.125.-E-LQ 11021 I 16382
P-A~-Sv~L 116044_-31 1164J.4E- 255 11640.2.-E- _____ I195

?'AZLaI. 6#-0.FFF$FF6E32U 6#.FFFF41#.FF FF PI______ I FFFF-FC#E256 = FF#E4098

? IMACINE-10 JNZS I TRUJE TRUEI TRUE.

?MAC':-Mf~...-OVEFLOwsI TRUE TRUJE ITRUTE
P AC' - eZ LX 12 12 12
? 'MAC:'M-MAN=A 12 1 g3 16,4____
P IiACt.hJE-7.MAX 1123 ____0 _____ 116384

PIM-NE- MN 1-125 (-1021 J13-

F.3.4 Representation Attributes of Fixed Point Types

For any fixed point qpe T, the representation attibutes are:

rMAC:-UE-RCUNDS TRUtE

TINIC:I4E..ovERFOWS TrRUE

45-35 FOO ROO F-S

F.2.5 Enumeration Representation Causes

The ictca codgs specified for each enuedccn literal has to lie wnitin the t-nge of the largest ine-eer y or te
impamendon (wr'uh is £ zGL. -. The enumeration rable size is determinec by the following 3eneic func.ion:

generic
type 1 AO..~ 3 (4:0)

fu n tion EZNU R)O.N_TABLZ-SIZ! retu.= NA"I1AL:
fTc.-nton !NUZMRAIOTANBT LZS -- =eta.-= NA--U?,AL .s

RESUL : AURAL := 0:
begin

for in .A:0NTP-'RANG!
loop

declare
subt7pe Z is rN RTbONrYP! .-ange 1 .. 1:

begin
RESULT :RS"LT + 2 + 'WIDTH:

end;
end loop;
re tu. RESULT:

end E..ZRIOA.NTABL=_S=ZE:

F.3.5 Record Representation Clauses

Widh a r.,rd representation clause, the pro.ner cn define the catc: Layout of a record in memoty. Two types
of rcresenadon clause are suppoorted: afigameat clauses and component clauses.

The value given for an alignment clause must be either 0. 1. 2 or 4. A record with an alignment of 0 m s=
anywhere in memory. Values other than 0 will f rce the record to start an a byte address which is a amulole of the
speci 'ed value. If any value other than 0. 1,2. or 4 is specified, the compiler wil report a RESItCfION error.

For comoonent clauses. the specified range of bits for a component must not be gater than the amotmt of storage
occoicd by that component. Gaos within a record my be achieved by cc: using same bit ranges in die record.
Violation of these resircdorts will be flagged with a REZ7 RICTION error mesge by the compiler.

In some cses. the compiler will generate extra compo, nents for a record. T:he cases are:

* If the record conmins a variant part and the difference between the smallesT and the largest variant is greater

than "2 bytes and

- it has more than one discriminant or

- the d;scrmnnat c=n hold more than 2d6 values.

tn these cas. an extra compment is generated which holds the a=-ual size cf the record.

* If the record contains array or reco d comonents -whose size de-e d on disriminats. In this case. one extra
component is generated for each such component holding its offset in the record relative to the componet
Senated.

The compiler does not generate ames for these extra components. Therefore, they cannot be aemsed by the Ada
program. ALso, it is not posible to specify repesentation clauses for the components generated.

F.-4 48-53 i0O ROO

F.4 ADORESS CLAUSES

Address clauses =an be used to aloc:te an obiec: at a soecif c loca ion in the computers address sace or to
asociate a tsk entry with an inceTuor.

Address clauses ane suoorted foe objecs declared in an objec: declaraton and for task enmes. If an addes Clause:
is specTied for a subprogram, package, or task unit, the compiler will report a RES CTI'ON error.

For an object, an address clause causes the object to start at the specified location.

6.4.1 Interrupt Entries

Address clauses are supported for task enres. An address clause applied to a task entry enables an oerating system
signal to iniae an enuvc =l to hac entry. The address supplied in an addres clause for a ask enuy mus be one ci
the consmats dec!ared in package SYST E f for this purpose.

The interrunt is mapped onto an ordinary enty calL The entry may also be called by an Ada entry caU statemenr.
However, it is assumed that there are no enT. calls waiting for the same entry when an ihterrtn ocu=r Otherwise.,
the program is erroneous and behaves as foUowr

• If an ena7 1 o behalf of an interrupt is pending, the interrupt pending is lost.

" If any entry call on behalf of an Ada entry c:9 swtement is pending, the interrupt entry ca takes precedence.
The rendezvous on behalf of the interr=u, is perfcrmed before any other rendezvous.

F.5 PACKAGE SYSTEM

The Ada language definition requires ever' irrple.mentation to supply a package SYS1 =vL In addirion to the
declarations required by the language, pac ge SYS -M includes dedmitions of certain conigurac-deendent
charac-eristics. The specificaticn for the C'Ada implementation is given below.

package SYST-M is

type ADDRESS is private;

ADDRESS N=LL : constant ADDRESS;
ADDRESS_ZERO : constant ADDRESS;

unc.ion "- (L=T: ADDRESS; RIGHT : INTCER) return ADDRESS;
funct'ion "&" (LZT :NTEGE; RIGHT : ADDRESS) return ADDRESS;
function '-" (L=-T: ADDRESS; RIGHT : I-E.=-G .) return ADDRESS;
function "-" (AT ADDRESS; RIGHT : ADDRESS) retur- ADDRESS;

function SYZMQLZCADDRESS (SYMCL : STRING) return ADDRESS;

type NAME is (CC'JR MCSaK);
S"CS'TM4AME constant NAIE C=JR-MCS8K;

S-ORAGE UNIT : constant :v 8;
MM-ORY SIZE : constant := 2 *, 31;
M=4 niN : constant :u - 2 ** 31;
MAX na : constant : 2 *- 31 - 1;
MAX-DIGITS : constant := 18;
MAX MANTZSSA : constant : 31;
F-N!A DELTA : constant: :2.0 ** (-31);
T-&C- : constant :u 1.0 / 60.0;

type UNSG ED SHORT MTE- is range 0 65535;
tyfpe UNSZGNEDT~iY E is range 0 .. 255;

4.8-355 FOO ROO F47

for UNSO'.:zn sHCRT T~~SZuse 16;
for U~~ ro':zuse 8;

suo -tpe AD~3RN~is INTEGER;

S~ibtylpe PRR4~ s IN~_'G= range (3 255;

type SIGNAL 4-5
SIGNAL NULL,

s=GNAL7TTT-L_:STuC.=,

SIGNAL Tll.A_ TRAP

S::GNAL -T CS:Uc ON

S:GN2L LOATING POZNTTOR,

SIGNAL3BUS EqqR
srGMALsr~fAMAON -V=oAT-_cN,
SIGALBAD RGt'^_T TOS*.CSEM 4C.L

S:GAL PZA R E

SIGNAL-USM-1I

SiGNAL PCINMLRST ~ORE,
S=GNALSTCP,
S:GNALTL.YHzALsTOP,
$ZGLCCNTZMM,
S:GNALLTM--NL IPUT,
S:WA.LT_-*NAL OLT7PrJT,
SMGX4L INPUT C:-ARACE3

S=GNAJWINOW-SZEIlZD, EED

S:6GNL_.LUTQF_3AND D~ATAL ON SCCXZT,

SO:G.*ALPRF.T-G TI-1L'AALAPM,
SGZA1OZIS pOSSI~LE)

-- SGMAL NULL .R=- intenit-4orxai2y ormitted
SZGIVAL HACU RE Constant ADRES
S::GALZTRUPTR_ constant ADDRE~SS;

SGN4AL-QOZI1L constant ADDRESS;
-- SZ ,'AL-LZ=GAL-INSTRUC-CN4-- intentionially omitted
SIGNAL TRACE TRAP ?=- constant ADDRESS;
S:CALABORTRE? - -:constant ADDRESS;
S.:GNALr1M =9STRUCTZOCMnRY: constant ADDRES;

-SIGNAL T~CTN CR-MRP intentionall~y omit ted
-- s:z=A~ C.L Rfl- intentionally omitted
-- SIGNALtJUSr-sMRR.F intentionally omitted

S-- SAL SEG .1ENT N VTCLATION REF intentionally omitted
SIGNAL BA R7~W TO SYSTMI CLL-Pv- : constant ADDRESS;
SZGNAp WRITE P M7 constant ADDRESS;
-- SIGNAL Z:=R prE intentionally omitted
SIGNAL TZRZCINATI REWF cons tanit ADDRESS;
-- SmGNAL USER 1-REF intent-onaflly omi tted
STNAL USER 2 WE constant ADDRESS;
S=GNAL~a= X EF : constant ADDRESS;
SICGNALWOOWER RESTORE REF constant ADDRESS;
-- SZGAL SOPREF intentionally omitted
51 GNAL T_.TNAz STOP REFv constant ADDRESS;

F4 4553 FOG ROO

sWNAL -CNT'NUE RZ-: ccnscant ADDRESS;
S-'AL----."AL-- T -.- :cnscant ADDRss;
SETNAL-TuN4AL- CUTP ? RE-: cons:ant ADDRESS;
S '*4AL- =.PT . AClcR--a : constant ADDRESS;
S:GNAL. - U T=N =MZ Ec=- -Rz? : constant ADDRESS;
S AL. Z --- _ -- L-I.EX .Z..EZ_ R: constant ADDRESS;
SGNAL W=NCCW RESZZZM.E7 : cons:ant ADDRESS;
S:GNAL"bUT OF"3AND DAXAON SCC- RET : cons:ant ADDRESS;

SZA BO~TAL "WN ALARM RZF? constant AWaRESS;
SGNAL- PROFLWNG "WR ALARM IE? : c:nstant ADDAESS;
$: A-- :5_-Pos _..---- -- : constant ADDRESS;

type ¢ "TC-CN-1D is new LNTEG';

NO !XT.;ON ID : constant EX=T-CNZ3 :2 0;

-- Codi.ng of the predefined exceptions:

C=NST.RAI.NT --RCR 1B : constant EXCEPT=N- : .
TUAEW z--R ID : constant XC-- 7TNl- :..
PaCaw-bas ~CaR : constant ZXCZT=ONmn: .

STCRAG -RROR ID : constant EXCZ TCN -= ...
TASW .(IGER C. : constant EX= T.CN- : ... ;

STATU7S ERROR 1=0 constant ZXCZTCN In :
OE -. CR --D : constant -X CTCN-ZD : ...

NAVZE;R;OR =D constant EXCZPT=CN =D: .

USE"ZC R 110 : constant EZX TCN--N : ...
CEVC !RORI : constant ZX=TOQN I=:
END =&-=_I : constant zXCZPTrCN I u..

DATA ERROR _D : constant EXCTTON D := ...
LA1CUT !RR-1 : constant ZXC=2rbCN In:= ..

T=ZERRORZD :constant EXC=PT=0N I

NO -=RR CODE : constant :- 0;

type -- C-ZT=ON .1NFOQRMAT=CN
is record

EXZID : X=T=CN ID
-- Identification of t.e exception. The codings of

-- the predefined exceptions are given below.
CODE ADOR : ADDRESS;

-- Code address where the exception occurred. Decending
-- on the kind of excepticn, it may be th.e address of
-- the instruction which caused the exception, or
-- the address of the instruction which would
-- have been executed if the exception had not occurr-- .

S:GUAL :YT.ZNL
-- Signal that caused this exception to be raised,
-- else signalnulU.

end record;

procedure GTT_ O N-CRMAT-N
(EXC 2=;4O : out TCZPTN.-- ORMAT=.ON);

function ZUTEGR TO ADDRESS(AODR : ADDRESS RANGE) return ADDRESS;
function ADDRESS-TO-TZ.ER (ADOR : ADDRESS7 return ADDRESSRAN GE;
pragma NLNE (IN4TEGR TO ADDRESS, ADDRZSSTO =TEGSC;

-- Conversion between address and integer types.

type EX-T STATUS is new NTE== range 0 .. 2 8-I;
NORMAL -ET : constant EXSTSTATUS :- 0;

4-535 F0O ROO F-9

Z.RNO : MNTZCZ-;
for ZL'.IC use at S-cL:: ' M DRZ - err-o"'

-- Allows access to the er-c set by the last systam call, C. or
-- assemiler rcut-i.e ca.2. that was made on Cehal! of the calling
-- task.

procedure E-C=T PRCCSS(STA$S : in EXT STATUS NORML_:T;
-- Terminates the Ada program with the fo1lowinq act-i4ons:
-- All Ada tasks are atorzed, and the main .rocram exits.
-- All =/0 huffers are flushed, and all cpen files~are closed.

private
-- mplementaloon Cef.ned

end SYST4;

F.6 TYPE DURATION

DURA7AON'SLALL is 2" seconds. This number is the smallest rower L e-vo which can rec.resent the number of
seconds in a day in longword rixed point nub-'represenwnon.

SYSTMA..IC is ecual to 1.0 /60.0 seconds. DURAZICN'SMALL is sinifi=cv smaller dan the acuna
conputer ciock-ickc. The:ore. the acc.rcy widh wnich you can specify a delay is limited by the ac:ual c.ock-tick
and not by DURATION'SMALL The following table summarizes the characeristics of the type DURATION:

ATT-MB UTE VALUE APPROX IMATE

D URAON'D EI.T J21.0#E1 - d1us

DURATION'SLALL 1271.04E-14 - 61 dus

DURAT1QW'FST 1-131077-00 I-36 hrs
DURA7ON'LAST 11310719999389d64,373 1- 36 hm
DURAON'SZ= 132

F.7 INTERFACS TO OTHER LANGUAGES

Proaga INTr-FACE is im.iemeted fcr two pro.amring languazes: C and Assebler. The .ragna s the for=:

pragma i=-.6TE1A C - (Ass, nboorzmjamme);

Ele. s, bprogr'm rmne is a subprogram declared in the same compilation unit before the pragna.

The only parameter mode supported for subarograms written in the C language is IN. The only
types allowed for parameters to subprograms written in the C language are VITEGER,
LONGFLOAT, and SYSTEMLADDRESS. These restrictions are not checked by the compiler.

Detils on interfacing to other languages are givea in Chapters 7 and 8.

F-1O 48-553 FOO ROO

F.8 INPUT/OUTPUT PACKAGES

The following two system-dependent parameters are used for control of external files:

" the NAME parameter

" the FORM parameter

The NAME parameter must be a legal RTU pathname conforming to the following syntax:

padutame : : - C / I I dirname (I dirname) /] filename

dirname andfilename are strings of up to 14 characters length. Any characters except ASCILNJL.' '(blank), and
7' (slash) may be used.

The following is a list of all keywords and possible values for the FORM parameter in alphabetical order.

APPEND - > FALSE I TRUE Only applicable to sequential and text files. If TRUE is specified
in an OPEN operation, the file pointer is positioned to the end of
the file. This keyword is ignored in a CREATE operation. The file
mode must be IN-FILE. The default is APPEND = > FALSE.

MODE => numericlteral This value specifies the access permission of an external file. It
only takes effect in a CREATE operation. It is ignored in an OPEN
operation. Access rights can be specified for file owner, group
members, and all users. The numericliteral has to be a three digit
octal number. The single bits of this number have the following
meaning:

8#400# read access owner
8#200# write access owner
8#100# execute access owner
8#040# read access group
8*020# write access group
8*010# execte access group
8#004* read access all
8#002* write access all
8*001* execute access all

You can specify any sum of the above. The default value is
8#666* which is the maximum access right.

Please note that the RTU operating system will subtract the
process's file mode creation mask from the mode you have
specified. You can change the file mode creation mask with the
RTU command urnask (see the RTUPogramming Manual). For
example, if your session has a file mode creation mask of 8022m
and you create a file with mode 84666#. the file will actually be
created with the privileges 8#644*.

RECORD-FORMAT a VARIABLE I FIXED This parameter is only allowed for sequential files. The default
value is VARIABLE.

RECORD-SIZE - > numeric-iteral Only applicable to sequential and direct files. It specifies the
number of bytes in one record. This parameter is only allowed for
files with a fixed record length. When specified in an OPEN
operation, it must agree with the corresponding value of the
external file. If ELEMENTTYPE is a constrained type, the

48-555 FOO ROO F-I I

maximum size of ELEMENTTYPE rounded up to the next byte
boundary is selected by default. If ELEMENTTYPE is an
unconstrained array type and you want a fixed record length file.
this parameter must be specified.

TRUNCATE = FALSE I TRUE Only applicable to sequential files. The FIlE_.MODE must be
OUTFELE. When TRUE is specified in an OPEN operation, the
file size is truncated to zero. The previous contents of the file is
deleted. If FALSE is specified, the file is not changed initially. If
less records than the initial file size are written, old records will
remain unchanged in the file. This parameter is ignored for
CREATE operations. The default value is TRUE.

F.8.1 Text Input/Output

There are two implementation-dependent types for TEXTJO: COUNT and FIELD. In C&Ada, they are implemented
as:

type COUNT is range 0 .. INTEGER'LAST;
subtype FIELD is INTEGER range 0 .. 512;

The line terminator is implemented by the character ASCILLF, the page terminator by ASCILFF. There is no
character for the file terminator. End of file is deduced from the file size.

F.9 UNCHECKED PROGRAMMING

F.9.1 Unchecked Storage Deallocation

Unchecked storage deallocation is not supported.

F.9.2 Unchecked Type Conversion

The generic function UNCHECKED-CONVERSION is supported as specified in the Reference Manualfor te Ada
Programming Language, Section 13.10. However, the following restictions apply-

The generic parameter TARGET must not be an unconstrained aray type. If TARGET'SIZE SOURCE'SIZE, the
result of the conversion will be unpredictable. On the other hand. if TARGET'SIZE < SOURCE'SIZE. the left-most
bits of the source will be copied to the target.

F-12 48-555 FO0 ROO

F.10 IMPLEMENTATION-DEPENDENT RESTRICTIONS

The following is a list of limitations of the compiler.

• The maximum length of a source line is 255 characters.

• A program library may contain no more than 16381 compilation units.

• A single compilation unit may not contain more than 65534 lines of Ada source text. (Depending on the
complexity of the code, the actual number of lines acceptable may be considerably smaller than the upper
limit.)

• The number of directly imported units for a single compilation unit may not exceed 63. Directly imported
units are those referenced by with clauses.

* The maximum number of nested separates is 100.

* The main program must be a parameterless procedure.

• The maximum length of an identifier is 255 (maximum line length). All characters of an identifier are
significant.

• The maximum number of bits of any object is 23 -1.

• The maximum length of a file name is 255 characters.

" The maximum length of a listing line is 131 characters.

• The maximum number of errors handled is 1000.

* The maximum number of units that may be named in the pragma ELABORATE of a compilation unit is 63.

" The maximum total size for text of unique symbols per compilation is 80000 bytes.

" The maximum parser stack depth is 10000.

" The maximum depth of nested packages is 100.

" The maximum length of a program library name is 242 characters.

" The attibute ADDRESS is not supported for packages. labels, and etrwies that do not have an address clause
applied to them.

48-555 FO0 ROO F-13

F.1 I UNCONSTRAINED RECORD RE-RESENTATICN

Cbiects of ,n =czC -mined record wpe with array com.onents based on the FiriJinant are allocated using the
disc minant value sunoiied in the cojec: declaration. However. if no disciminant is suoplied in the objec:
decaration, the cmnipier will chose the maximum possible sime. For exam.le:

type DYN ZAC .RECZRD (L=NGTIG : NA. : 10) is

S" MR : ST.RNG (I LZNG'H);
end record;

DSTS : DYNAIMIC-SM .NG;

For the record DSTR, the Compiler would attempt to allocate NAT'PALLA.ST bytes.
However, this is more than 2 GBytes. As a consequence, CONSTB ,NT.ERROR would be
raised. On dhe ocher hand, the declaration

CST.R : DYNAMIC_ST'.=NG (80);

causes no problems. The compiler would allocate 84 bytes for CSTR.

F.12 T ASKING IMPLEMENTATION-

The C'Ada sten irnole.rents fully pre-emptive and priocirt-driven aski ng. ?r'-em.ve means that task switches
may take place even when the currently running task does not voluntarily give up processor controL This may
hanoen when a task with a high priority is wainti on an external event (time eri'od specified in a delay sarene..
e.ircs). W'hen this event occurs. processor control is passed to the waiting tk imnediately if it has the highest
priority of the tasks ready to run.

The C'Ada run-time system keeps track of all tasks in two categories: asks which are ready to run and those that are
sus endcd because they are waimig for something (e. a rendez-vous to oc.zr or waiting in a delay stanemnt). The
tasks ready to run are sorted in a queue by priority (high priorities first). Wii one priority, they are sorted in the
order in which they entered the 'ready' stare (tasks waiting !onger are served r). Whenever the run-dme system
needs a (ask to schedule, the firs task in the queue is selected and run

The acc-rav of delay statements is governed by the resolution of the operating syMLn dock which is 1.0/60.0
seconds (SYS "M.'ICK). Although theresoiuion of the type DU, -: N is much higher (Z" seconds), task
switches caused by the exwiration of a delay can only take place on a .-ock tick. A task waiting in a delay enters the

ready' state when the next clock tick after it delay period has exp ired.

Another imnlementaion-denendent aspect cf tasking is the stack "- of eac task. Al task obiects Of a task -Ipe
with a lengtn clause and all tasks of an anonymous task type have a stack =ace of 1K bvtes. For task tyes. a
length clause may be given. The soecified amount of sorage sace will be a.locared for each task object of that type.

In addition to stack space, a task & control block is allocated for each task object. It *occupies
250 + 20' number.of-..ntriea bytes. The task control block is deallocated when the task passes
out of scope. .

A program is errcaeous if any of the following cerarions can be .erformed simultaneously by more than one task:

" The allocator new is evaluated for the same collection.

" Input-Output operations are performed on the same emrerna, ie.

A C'Ada task is not implemented a an indepedet operating syste, process; rather, the whole Ada program is one
operating system process.

F-14 48-555 FO ROO

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

SACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI 254 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIGID2 254 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to $BIGID1 except
for the last character.

SBIG_ID3 127 * 'A' & '3' & 127 * 'A'
An identifier the size of the
maximum input line length which
is identical to SBIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 127 * 'A' & '4' & 127 * 'A'

An identifier the size of the
maximum input line length which
is identical to SBIGID3 except
for a character near the middle.

$BIG INT LIT 252 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

SBIG.REALLIT 250 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 ... & 127 * 'A' &
A string literal which when
catenated with BIGSTRING2
yields the image of BIGID1.

$BIGSTRING2 ... & 127 * 'A' & "1' &
A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGID1.

SBLANKS 235 *

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_-LAST 2147483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT_- MEM_-SIZE 2147483_648
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULTSTOR_- UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

TEST PARAMETERS

Name and Meaning Value

SDEFAULTSYSNAME CCUR.MC68K
The value of the constant
SYSTEM.SYSTEMNAME.

SDELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELDLAST 512
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

SFIXED NAME NOSUCHFIXEDTYPE
The name of, a predefined
fixed-point type other than
DURATION.

$FLOAT NAME LONGLONGFLOAT
The name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONG-FLOAT.

$GREATER THAN DURATION 0.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATERITHAN DURATION-BASE LAST 200_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH_PRIORITY 255
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALXTERNALFILENAME1 nodir/filel
An external file name which
contains invalid characters.

SILLEGALEXTERNAL .FILENAE2 wrondir/file2
An external file name which
is too long.

TEST PARAMETERS

Name and Meaning Value

$INTEGER.FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUSI 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESSTHANDURATION -0.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHANDURATIONBASEFIRST -200000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 18
Maximum digits supported for
floating-point types.

$MAXINLEN 255
Maximum input line length
permitted by the implementation.

SMAXINT 2147483647
A universal integer literal

whose value is SYSTEM.MAXINT.

SMAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAX INT+I.

TEST PARAMETERS

Name and Meaning Value

MAX LENINTBASED.LITERAL "2:" & 250 * '0" & "11:"
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

SMAX LENREALBASED LITERAL "16:" & 248 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRINGLITERAL "" & 253 * 'A' &

A string literal of size
MAXINLEN, including the quote
characters.

$MIN.INT -2147483648
A universal integer literal

whose value is SYSTEM.MININT.

SMINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONG FLOAT, or LONG-INTEGER.

$NAMELIST CCURMC68K
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

TEST PARAMETERS

Name and Meaning Value

SNEW MEM_.SIZE 2147_483_648
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

$NEW STORUNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE-UNIT, other than
$DEFAULT_STORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

SNEWSYSNAME CCURMC68K
A value of the type SYSTEM.NAME,
other than SDEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 1.0/60.0
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OFTHE GUARD results in a call to REPORT.FAILED at one of

lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none
of the units is illegal with respect to the units it depends on;
by AI-00256, the illegality need not be detected until
execution is attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D (16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the

WITHDRAWN TESTS

parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

h. CD2A8lG, CD2A83G, CD2A84N & M, & CDL50110 5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2B15C & CD7209C These tests expect that a 'STORAGESIZE
length clause provides precise con- trol over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D1lB This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to
CALENDAR.CLOCK change by at least SYSTEM.TICK; however, by
Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

p. CE21071 This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA ERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

WITHDRAWN TESTS

q. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls to END OF LINE &
ENDOFPAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARDINPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and che test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS
a

APPENDIX E

COMPILER AND LINKER OPTIONS

This appendix contains information concerning the compilation and linkage
commands used within the command scripts for this validation.

&

Default Values for Compiler Start Options

-1 The ootion controls the generation of source listing. The default action is not to
generate the complere source listing.

-L This option specifies the name of the dle or the directory for the listing dle. By
defauit, the warning and error messages are directed to stdou-.

-Id This option specifies Id options such as object files. archives. By iefault. .od

options are passed.

-A JL This option controls the generation of assembly listing for -he source being compiled.
By default, no assembly listing is generated.

-C This option controls the copying of source aie being compiled into the library. By
default. source file is not copied into the library.

-3 This option causes the suppression of all run-time checks. The def' uit action 's to
generate code for ail run-time checks.

-O This option controis the optimization performed by rhe compiler. The defauit option
(1) is ro perform optimization.

-I This option controls the iniine expansion of subprograms that have the pragma
:N'L:N specified. The defauit action (1) ;s to perform the itiine expansion of
subprograms for which the pragma :NL:Nz has been specified.

-s This option directs the compiler to only perform Syntax analysis. Thle defauit is to
perform the complete compilation of the suppiied source program.

-V This option causes the compiler to produce :he compiler version and information
messages to be diisplayed. The default action is to suppress "e 01suiav of such
options.

